THFRMN DYNAMICS

Closed

- Diathermal Boundary : Heat Flow Possible
- Adiabatic Boundary : NO Heat Flow Possible
- Rigid Boundary: Volume Change not possible
- Permeable Boundary: Mass Flow Possible

Types of Processes			
Isothermal	ΔT=0	Isochoric	ΔV=0
Isobaric	ΔΡ=0	Adiabatic	q=0
Cyclic Process	Same Initial and Final State		

- State Function Only Depends on Initial and Final State; ΔU, ΔH, ΔA, ΔG, P, V, T; These are 0 for Cyclic process
- Path Function Depends on Path followed from state A to B; e.g. q ,w, C; Non-Zero for Cyclic Process

Extensive Properties	Intensive Properties	
Mass/Amount dependent	Mass/Amount Independent	
Internal Energy (U), Enthalpy (H), Gibbs Free Energy(G), Mass (m), Entropy (S), Volume (V).	Temperature (T), Boiling & Melting Point, Specific & Molar Heat Capacity, Refractive Index, Density	
Additive in Nature	Non-Additive in Nature	

- Ratio of two Extensive Properties is Intensive in nature, eg : Mass/Volume = Density (Intensive)
- If Extensive property is defined per unit (mass, mole), it becomes intensive, Molar Volume (V/n)

Term	Definition
Internal Energy (ΔU)	Sum of All the Energies in a system Absolute Value cannot be calculated
Heat (q)	Energy exchange due to Temp. difference
Work (w)	Energy exchange due to displacement

Some Importa	nt Formulas from 1st Law		
P-V Work	-P _{ext} ΔV		
1st Law of Thermo	$\Delta U = q + w$		
1 st Law targets energy of	conservation (not for open system)		
Enthalpy Change	$\Delta H = \Delta U + P \Delta V$		
Heat at constant V	$\Delta U = q_v$		
Heat at constant P	$\Delta H = q_p$		
Exothermic Process	$\Delta H < 0$; $\Delta H_r > \Delta H_p$		
Endothermic Process	$\Delta H > 0$; $\Delta H_r < \Delta H_p$		
Relation Between ΔH and ΔU for Ideal Gas	$\Delta H = \Delta U + \Delta n_g RT$		
Reversible Process	Irreversible Process		
Slow process carried out in infinite steps	Instant Process which can also be called Natural process.		
(A) Reversible (B) Irrev	Infinite steps to remove grains of sand in A Instant Removal of weight in B t Ext. pressure		

Work under P-V Diagram

$$dw = -P_{ext}.dV$$

$$w = -\int_{V_1}^{V_2} P_{\text{ext}} \cdot dV$$

$$w_{\text{net}} = w_{\text{AB}} + w_{\text{BC}} + w_{\text{CD}}$$

BC is iso-choric process

$$w_{BC} = 0$$

Work done is area enclosed in cycle $w = \pi, a, b$

Clockwise = +ve work done Anti-Clockwise = -ve work done

PV diagram for different processes and work done

- Isothermal work > Adiabatic work
- Reversible work > Irreversible work
- · Maximum work : Reversible isothermal process.

Heat Capacity (C)		
Amount of Heat required to increase the temperature by 1° (J/K)	$C = \frac{+q}{\Delta T}$	
Molar Heat Capacity (C _m) Heat Capacity per mole (J/mol.K)	$C_{\rm m} = \frac{+q}{n\Delta T}$	
Molar Heat Capacity (C _m) Heat Capacity per gram (J/gm.K)	$C_s = \frac{+q}{m\Delta T}$	

	C at constant pressure
$q_p = C_p.dT = dH$	$q_v = C_v.dT = dU$

- C = Path function; Cp and Cv = State functions.
- Heat capacity is an extensive property. Cm and Cs are intensive properties.
- For any substance, C_{pm}-C_{vm} = R and C_p/C_v = γ
- For solids and liquids, C_{pm} ≈ C_{vm}
- Heat capacity increases with increase in temperature due to increase in vibrational degree of freedom.
- C (isothermal) = [∞] > C_p > C_v > C (Adiabatic) = 0

Degrees of Freedom			
Atomicity	Monoatomic	Di/Linear	Non-Linear
Translational	3	3	3
Rotational	1	2	3
Vibrational	3N - f trans - f rot		

Vibrational DOF's only contribute at High Temperature

Vibrational DOF's only contribute at High Temperature					
Other Important formulas related to DOF					
$C_v = f.R/2$		γ	$\gamma = 1 + 2/f$		
In Adiabatic Process, q=0					
Gas	f	Cv	Cp	γ	
Mono	3	3R/2	5R/2	5/3	
Di/Linear	5	5R/2	7R/2	7/5	
Non-Linear	6	3R	4R	4/3	

With increase in y, Atomicity decreases

Calculated U.H.g.w for the two main processes Isothermal Process ΔΗ = 0 ΔU = 0q = -wIrreversible work $w = -P_{\text{ext}}\Delta V = -P_{\text{ext}} \left(\frac{nRT}{P_2} - \frac{nRT}{P_1} \right)$ Reversible work $\mathbf{w}\mathbf{w} = 2.303$ nRTlog $\frac{V_2}{V_1} = 2.303$ nRTlog $\frac{P_1}{P_2}$

$$\mathbf{w}$$
w = 2.303nRTlog $\frac{V_2}{V_1}$ = 2.303nRTlog $\frac{P_1}{P_2}$

Adiabatic Process

$$\Delta \mathbf{U} = nC_{v} \Delta T \quad \Delta \mathbf{H} = nC_{p} \Delta T \quad \mathbf{q} = 0$$

Irreversible work

$$w = \frac{nR\Delta T}{\gamma - 1}$$
 Find Final Temperature using
$$nC_{\nu,m}\Delta T = -P_{ext}(V_2 - V_1)$$

Reversible work

Find Final Variables using $TV^{\gamma-1} = Constant$ $w = \frac{nR\Delta T}{\nu - 1}$

 $PV^{\gamma} = Constant$

 $T^{\gamma}P^{1-\gamma} = Constant$

Carnot Cycle

Heat Engine - Thermal Efficiency

 $\eta = \frac{1}{\text{Total amount of heat absorved}}$

$$\eta = 1 - \frac{Q_2}{Q_1} = 1 - \frac{T_2}{T_1}$$

Expansions AB: Isothermal; BC: Adiabatic

Refrigerator

$$\beta = \frac{Q_2}{W} = \frac{Q_2}{Q_1 - Q_2} = \frac{T_2}{T_1 - T_2}$$

$$\beta = \frac{1 - \eta}{\eta}$$
 Thot

A state function is obtained from the derivation of $dS = \frac{dq_{rev}}{T}$ Carnot cycle. i.e. Entropy

(22

ENTROPY (S)

- Degree of Randomness.
- S (Gas) > S (Liquid) > S (Solids)
- Entropy is 0 in cyclic process (State function).
- · It is an Extensive property
- · Units are J/K.

Entropy in an Isolated system

- dS > 0 (Irreversible Process, Spontaneous)
- dS = 0 (Reversible Process, at Equilibrium)
- dS < 0 (Impossible process or NON-Spontaneous)

Second Law of Thermodynamics

- Entropy of universe is always increasing.
- ΔS_{universe} = ΔS_{sys} + ΔS_{surr} = 0 (Reversible process)
- ΔS. universe 0 (Irreversible process)

Other Important Points

- Higher Atomicity, Higher Entropy. S(NH₃) > S(H₂).
- · For same atomicity, Higher size, Higher Entropy.
- · Entropy increases on mixing of gases.
- Allotropic forms with ordered arrangements have lower entropy. S (Diamond) < S (Graphite)

General Formulas for Entropy

$$\Delta S = nC_V ln \frac{T_2}{T_1} + nRln \frac{V_2}{V_1} \qquad \begin{array}{l} \text{In Iso-choric process,} \\ \text{2nd Term becomes 0} \end{array}$$

$$\Delta S = n C_p ln \frac{T_2}{T_1} + n R ln \frac{P_1}{P_2} \qquad \begin{array}{l} \text{In Iso-baric process,} \\ \text{2nd Term becomes 0} \end{array}$$

In Iso-thermal process, 1st Term becomes 0

In Reversible Adiabatic process, q=0. Thus, $\Delta S = 0$

Entropy during phase change

$$dS = \frac{dQ_p}{T} = \frac{dH}{T} = \frac{mL}{T} \quad \begin{array}{ll} \text{At Constant T \& P} \\ \text{or During a Phase Change} \\ \text{L = Latent heat} \end{array}$$

Fusion S

L | Vaporisation L

G | Sublimation S

G

Gibbs Free energy (G) $(-\Delta G = w_{useful})$

- It is a state function, an Extensive Property and Used to calculate Spontaneity.
- Spontaneity means that the reaction can be carried out on it's own (it is feasible). All Natural processes are spontaneous.
- $\Delta G = \Delta H T\Delta S$ and Spontaneity will be achieved at all temperatures when $\Delta H < 0$ and $\Delta S > 0$.

Enthalpy of a Reaction ($\Delta_r H$)

The heat exchanged during complete course of reaction at constant pressure.

Exothermic : Negative Δ_rH

Endothermic : Positive Δ_rH

Hess's law of constant summation

At Constant T & P, the total enthalpy change for the reaction is the sum of all changes. (Single or Multistep)

- 1. Enthalpy of Phase Transition
- 2. Enthalpy of Formation
- 3. Enthalpy of Combustion
- 4. Lattice Enthalpy
- 5. Hydration Enthalpy
- 6. Enthalpy of Solution
- 7. Enthalpy of Neutralisation
- 8. Enthalpy of Atomisation and Bond Enthalpy

Different Types of Enthalpy

Enthalpy of Phase Transition (ΔH_{transition})

The AH of reaction when 1 mole of a substance in one physical state converts to another physical state.

Fusion, Melting, Vaporisation (+ve)

Freezing (-ve)

Enthalpy of Formation (ΔεΗ)

- The ΔH of reaction when 1 mole of a substance is produced from its constituent elements which are present in their free state.
- $(\Delta_f H)$ for free state elements is considered as **Zero**.
- Some elements in their free state are
 - F₂(g); Cl₂(g); Br₂(l); l₂(s); P₄(s); H₂(g); O₂(g); Sa (s); C (s, Graphite); Metal - M(s); Hg (/).
- For any Reaction,

$$\Delta_r H = \sum V_P \, \Delta_f H_P - \sum V_R \, \Delta_f H_R$$

Enthalpy of Combustion (Δ_cH)

ΔH of the reaction in which one mole substance is burnt in the excess of O2 (air). Always (-ve ΔH).

$$C_x H_y + \left(x + \frac{y}{4}\right) O_2 \rightarrow x C O_2 + \frac{y}{2} H_2 O_2$$

Lattice Enthalpy

Energy to convert 1 mole of Ionic Solid into gaseous ions

Energy Required to Break.

Thus +ve AH

Hydration Enthalpy

Energy produced when 1 mole of the gaseous ions is mixed with H₂O (water) to produce hydrated ions.

This Stabilises Ions. Thus, -ve AH

e.g. $CuSO_4(s) + 5H_2O(l) \rightarrow CuSO_4.5H_2O(l)$

Enthalpy of Solution (ΔH sol

1 mole substance (s/l/g) converts to aqueous substance e.g. Glucose dissolved in water to form a solution.

Enthalpy of neutralisation

- One gram equivalent of the acid is completely neutralised by a base in dilute solution.
- SA & SB releases -57.1 kJ/mol at 298 K.
- SA-WB, WA-SB, WA-WB < -57.1 kJ/mol

Enthalpy of Atomisation

1 mole gas molecules converts to free ions in gas phase.

e.g.
$$CH_4(g) \rightarrow C(g) + 4H(g)$$
; $H_2(g) \rightarrow 2H(g)$

Bond Enthalpy

Average Enthalpies when 1 mole of compound is converted into atoms. Eg.

$$CH_4(g) \rightarrow CH_3(g) + H(g) \quad BDE_1$$

 $CH_3(g) \rightarrow CH_2(g) + H(g) \quad BDE_2$
 $CH_2(g) \rightarrow CH(g) + H(g) \quad BDE_3$
 $CH(g) \rightarrow C(g) + H(g) \quad BDE_3$

$$CH(g) \rightarrow C(g) + H(g)$$
 BDE_4

• For Any Reaction, $\Delta_{\Gamma} H = (B. E)_R - (B. E)_P$

Kirchoff's Equation

Enthalpy of a reaction's variation with

temperature changes.

$$\Delta C_p = \frac{\Delta H_2 - \Delta H_1}{T_2 - T_1}$$

 $\Delta C_p = \Delta C_p (prod.) - \Delta C_p (reac.)$

$$\Delta H_2 - \Delta H_1 = \int_{T_1}^{T_2} \Delta C_p \, . \, dT$$

